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Pulsed-Source Crystal Analyzer Spectrometer’ 
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Argonne National Laboratory 

This paper outlines the derivation of an expression for the resolution of a crystal analyzer 
spectrometer and gives explicit conditions for geometric focusing. The development preserves full 3- 
dimensional generality so as to guide the choice of geometric parameters in the design of 
instruments. Historically, the high-resolution crystal analyzers are “backscattering” instruments, for 
which the Bragg angle is close to 90 degrees. The present results indicate that comparable high 
resolution can be attained using more general analyzer angles, which may provide some 
advantageous options for design. The focusing relationships define continuous, focused surfaces, 
and the results also provide a way to assess the resolution of a spectrometer built up of small, focused 
planar elements. 

1. PRELIMINARY ANALYSIS 

Figure 1 shows the conceptual layout of a crystal analyzer spectrometer. Pulses of neutrons 
emerge from the moderator surface “m” having wavelength h’. Neutrons strike a sample “s” where 
they are scattered inelastically with energy gain E to wavelength h. Scattered neutrons impinge on the 
analyzer crystal “x” where, if their wavelength and incident angle are appropriate, they scatter, and if 
scattered in the appropriate direction, register in the detector “d”. 

Mobator, “m” 

Figure 1. Schematic diagram of a crystal analyzer spectrometer. The figure shows a general neutron 
trajectory through the instrument (red). The elements m, s, x, and d (blue) are two-dimensional 
surfaces in a general, three-dimensional, non-planar arrangement. 

- This work was performed under U. S. Government contract No. W-31-109-ENG-38. 
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We treat the instrument as having a thin sample, a thin analyzer crystal, and a thin detector, all 
planar, The angular distribution of neutrons from the source is isotropic and we ignore angular 
variation of the scattering and detection probabilities. There are no collimators, 

The time to fly from the moderator surface to the detector is 

t = 41/v’ + (42 + 4,)/v , (1) 

where v ’ and v are the neutron speeds before and after scattering, and !,, 4, and 4, are the distances 

between general points r, r, r9 and r, on the moderator, sample, analyzer crystal, and detector 
surfaces, respectively. We seek to describe the instrument response when the scattering energy gain E 
is unique, 

E = &( l/X2 - l/h) . (2) 

Then the flight time is 

where 

t = g&h + (42 f 4,)X) , (3) 

(4) 

2. FLIGHT PATH LENGTHS AND TIME OF FLIGHT 

We pursue an analysis linearized in the small deviations of quantities from their mean values, 
While there are a number of equivalent ways to go about it, we develop an expression for the flight 
time, term by term and factor by factor, using expansions to first order in the deviations to arrive 
finally at a result which is linear in the deviations. This approach has the advantage of transparency, 
albeit at the expense of length. 

We express the lengths of flight paths in terms of mean values and deviations from the mean 
values, 

where the mean values are 
4, = 4,(r,,rd) = L, + S t,(r,,rJ (7) 

L, = (~&~,)) , etc. (8) 

The averages are taken over the allowed positions on m, s, x and d. Throughout, boldface characters 
denote vector quantities; the circumflex designates a unit vector. 

For a given path (r, r, r, rd) through the instrument the analyzer scattering angle 28 is 
unique, the Bragg angle is 

8 = B(r,r,rd) = 8, + 6 e(rstrzrd) (9) 
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and only one wavelength il is reflected, 

A.= A(rrrsrd) = 2d sin (e(r,r,rJ) , (10) 

A =2d sin e,(I + cot B,S O(rgrzrd)) = A0 + 6A.(r,r,r,) . (11) 

For scattering with unique energy gain E [equation (2)] if the mean wavelength after 
scattering is &,, the mean incident wavelength is il’, 

A.~,~ = l/(uao2 +2 mEhP) (12) 

so the ratio of pre- and post-scattering wavelengths is 

a’ ia =I/ 0 0 1+2ma 2ih2 0 - (13) 

Meanwhile, with & fixed, when h differs from A,, then h’ differs from &’ by an amount found by 
differentiating the relationship (2), expressed in homogeneous form, 

F(A,a:&) = l/at2 - l/a2 - 2mE/h2 = 0 , (2’) 

i!E 
da a, ‘a +%laf I saf =2~ao3sa-2~a~03sa~=o 

0 

(14) 

so that 

(15) 

Then the flight time for a general neutron trajectory is 

t = t(r,r,r,rJ =t{ (L, + 6Pl(r,r,))(;Z’, f SAY + 

+ (L2 + Se&q + L, + 6e3(rmrd))(~o + 64) (16) 

which to first order in the deviations of the flight paths and wavelengths from the means is 

t = ~{ay, + a,(L, + Lo) + a’,se, + ao(6e2 + 6e3j + L,6ar+(L, + L,)~A) . (17) 

We have defined the mean values so that the deviations average to zero. ‘Ihe first term is the 
dominant term to, 

to = y&A, + w5, + L3)) 7 (18) 

which is independent of the deviations. Thus, after a few steps of algebra, in view of (1 l), we can 
express the time of. flight in terms of the deviations (which depend on the path through the 
instrument) 

t = t, + $cng/adse, + (se, + se,)] + +t(ng/nJL, + (Lo + L,)I cot e,s e . 
0 09) 0 
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It turns out to be more convenient to express the wavelength deviation 

Sa=AiZ,cot Bose 

in terms of the deviation of cos 28 from its nominal value, 

Sil=2d G(sin 8) = 2d 
d(sin 6) 

d(cos 2 0) s (cos 2 @ - 

Since 

sin 8 = J(1 -cos28)/2 , 

so that 

&sin ej 1 1 1 
=--- d(cos 2 e) =-T J(i-c0828)/2 4 sin 8 

(20) 

(22) 

(23) 

“a=-W& e ) S (~0s 2 f3) = - il,S (cos 2 e) 14 sin2 0, . 

Therefore the flight time for a general “neutron trajectory is 

(24) 

3. THE COUNTING RATE DISTRIBUTION 

The observed counting rate distribution C(T) at time T is the weighted sum of the rates for all 
the allowed paths through the instrument, 

C(T) = 
s 

i(a:t3F~rdF,(r,)P~~r~~~)P~r~a)~T - t’- t(r,r,r,rJ) d2r, d2r, d2r, d2r, dt’ 
(26) 

where the wavelengths h and h’ depend uniquely on the path through the instrument. Here, F&d 
represents the distribution of intensity on the moderator surface and F&h represents the distribution 
of the allowed points on the sample. We assume that the wavelength-time distribution i(h’,t’) is 
independent of position on the moderator surface and slowly varying with respect to wavelength, 
though sharply varying with time, 

i(h:tl) = i(A’,,tl) . (27) 

Considering that the detection probability is independent of the position of the incident neutron and 
(already assumed in the treatment outlined above) independent of the direction of incidence, and 
moreover, is slowly varying with respect to wavelength, 

Equation (26) does not include an overall normalization factor accounting for, for example, the l/r ’ 
variation of the intensity or for the scattering power of the sample. Thus (26) as written (for 
simplicity) gives only a relative intensity, while it provides for a valid calculation of the resolution. 

The probability of reflection from the crystal decomposes similarly into a product 
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in which F,(r,) represents the distribution of allowed points on the crystal, and px(h,q) is the angle- 
dependent reflection probability, which depends strongly on q, the direction of momentum transfer 
of the neutron, and weakly on the wavelength, since we have already built in the Bragg condition. 
Figure 2 illustrates the analyzer geometry, which could be either a reflection (shown) or a 
transmission arrangement. 

The reflection probability must account for a mosaic distribution of finite width and for 
secondary extinction, which flattens the reflectivity distribution. We ignore the shift in reflecting 
position due to propagation of neutrons in the crystal and incorporate everything else in the function 
&q) which depends parametrically on the nominal reflecting vector z, , the unit vector 
perpendicular to the nominal reflecting planes. The 2dimensional distribution p,(h,g) (a scalar 
function) depends on individual crystal properties, and is sharply peaked for values of q near r, . 

Incident neutron 

Reflected neutron 
direct ion k f (r x ,r d) 

Figure 2. Diagram of crystal reflection, intentionally general in that the reflecting planes are not 
parallel to the cut plane of the crystal. 

For the moment we denote the reflection probability as a function of the vector qxz,, a 
measure of the deviation of q from r, 

which is a function similar to that shown in Figure 3. 
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Reflection Probability 

Figure 3. Schematic illustration of the reflection probability function. 

The angular distribution of neutrons reflected by the analyzer crystal, and thus the spectrometer 
resolution in the absence of focusing, is doubly determined: by the strictly geometric effects of the 
f&rite sample, analyzer crystal, and detector; and by the effect of the mosaicity and orientation of the 
reflecting planes of the crystal. 

4. OUTLINE OF THE FOCUSING CALCULATION 

Now we clarify the intent of our effort. We compute the counting rate function C(T) (which 
applies for the given, fixed energy transfer E), 

c= C(T)dT s (31) 

7 = $l T C(T)dT (32) 

(T - n2C(T)dT (33) 

Focusing implies that oT2 is a minimum with respect to instrument parameters. 
It is of central importance to treat the expression for the counting rate function C(T) in terms 

of distributions of independently distributed variables; these appear in the overall distribution as 
products of distributions of individual variables. Thus it would be incorrect to compute oT * using 
expression (19) assuming, for example, that a, is independent of & and 68; the independently 
distributed variables are r,, F,, F~, F,. Both 8f, and & depend, for example, on F,, so variations in & are 
not independent of variations in 61,. Therefore we must eventually reduce our expression for the time 
of flight, t, to one that depends explicitly on the independently distributed variables. 

First, however, we note a simplifying feature of the problem, namely that the emission time 
distribution, at least within our approximation, only broadens the overall 
separate analysis. Writing (26) as 

result and does not require 

(34) 

where 
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x 6 (z- t(r,,r,,r,,rJ) d*r, d2r, d*r, d*r, (35) 

we find that the mean time of the counting rate distribution is 

T = C(X,) + t, (36) 

in which F&3 is the mean of the pulse emission tune distribution for neutrons of wavelength x0 , and 
the variance of the counting time distribution is 

(37) 

Here to is the mean flight time through the instrument. opz is the time variance due to the instrument 
geometry alone, which is the object of our consideration and is to be minimized while the counting 
rate C is made maximum. of@‘O> is the variance of the emission time distribution which is a quantity 
determined by the moderator properties. We will ignore effects of the source pulse emission time 
distribution in the work immediately to follow. However, the width of the emission time distribution 
imposes an irreducible lower limit on the resolution of the instrument and sets the scale for the 
geometric resolution. 

5. EXPRESSIONS FOR DISTANCES AND ANGLES 

Now we must obtain explicit expressions for the distances, angles, etc., and the deviations of 
these from their mean values, in terms of the independently distributed variables, the positions r,, r,, r,, 
r, of vertices of the neutron path on the spectrometer surfaces. We will carry as much generality as 
possible. 

The vector distances between vertices in the neutron path through the instrument are 

4,,=rs-rm 
Qsx=rn-rs 
Pxd=rd-rx. 

We defme the mean positions of the elements of the instrument as 

Rm=(r,)=$--h r,d*r, 

Rs= (Is) = slAmrs d*r, 

Rxz(rx)=~~~’ r,d2rx 
x x 

Rd= (rd) = $-&r,df, , 

(38) 

(3% 

where the A s are areas of the relevant surfaces. The mean distances vectors between elements of the 
instrument are 

L,=R,-R, 

L sx=Rx--Rs 
L,=R,-R,. (40) 
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Nominal scattering angles follow 
sample is 

from their cosines: the cosine of the nominal scattering angle at the 

cos psO = Z,-t, = Lms*Lsx 
ILm.&l 

(41) 

and the cosine of the scattering angle at the analyzer (twice the nominal Bragg angle) is 

cos 28, = iT,*Z, = sx’ xd 

IG I 

. 

sx xd 
(42) 

Deviations of points on the vertices of the path through the instrument from the mean points are 

&=r,,,- R, 
Ss=rs-Rs 
&=r,--R, 

Sd=rd-Rd, (43) 

as illustrated in Figure 4. Vector distances between points on the neutron trajectory are 

Pm= R,-R,+S,-(S,=L,+S,-6, 
~,=R,-R,+S,-~,=L,,+S,-S, 

(mi=Rd-~x+Sd-6x=Lxd+~d-Sn W) 

and detailed scattering angles on the neutron path are 

Vsct or b& wesn I Analyzer and Detect0 r 

\ Interact ion Points 
\ 

\ I xl 

MeanPoht 

‘Detect or 

Neutronkth 

Figure 4. Illustration of the definition of position deviations on (for example) the detector surface. 

and 

(45) 

151 



cos 28 = P,.P, = 1: IL sx’ * , 
sx xd I 

(46) 

in which the angles depend on the path through the instrument, that is, on r,, r,, r,, r,., or, equivalently, 
on the deviations of the positions of the vertices from those of the nominal path through the 
instrument, 4, S,, &,a, . 

Now we work out expressions for various needed quantities as first-order approximations in 
the position deviations. The (scalar) length of the path between the emission point on the moderator 
to the scattering point on the sample is, for example, 

so that 

Pm= [L",+ 2L,.(6,-S,)+(6,-~~21’nt (48) 

which to first order in the deviations is 

thus also 
4, = Lsxf 1 + jz, - (6, - 4) I ~~~~ 

and 

Similarly, the inverse flight path lengths, to first order, are 

and 

w> 

The cosine of the scattering angle at the analyzer crystal is 

which to first order in the deviations is 

(52) 
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In (52), we recognize the leading term as the cosine of the nominal scattering angle at the analyzer, 

cos 28, = (L, * L:xd) , (53) 

with the deviation of cos 28 from its nominal value 

The result for the cosine of the scattering angle at the sample is similar to (51) (replace s with 
m, replace x with s, replace d with x)_ With the assumed nondispersive (E independent of the 
scattering vector) scattering at the sample, we have no explicit use for this. However, in the case of 
dispersive scattering, the analysis would require it, and would need to be redone with greater 
generality. We do not provide the result here. 

Several tasks remain before the results become explicitly useful: to combine all these results 
into a first-order expression for the time-of-flight, to collect separately the coefficients of the 
deviations &, 4, 4, 6,; and to set explicit coordinate systems to represent the distributions F,, F,, F,, 
and F,, . Focusing conditions will appear after the second of these steps is completed, in that the 
focusing conditions require that the collected coefficients are zero. The expression for the resolution 
will be explicit after the third step. Finally, representations for the Fs and for the reflectivity function 
p,(h,q) are required to complete the calculation for the resolution width crg2 . 

6. FOCUSING 

We recall the expression for the time of arrival in terms of the deviations of the flight path 
lengths from their mean values and of the cosine of the analyzer scattering angle from its mean value 

t = to + $po/ndsel + (se, + se,)] -&afo/n~3~l + w2 + L~)I -$-pm 2 0) 
0 0 

(25) 

and introduce the somewhat simplified notation 

L,=hns, el=e,, 84,=E,+5,-s~, (55) 

L2 = Lsx , e,=e,, 6e2=2,4+5,), (56) 

L,=Lxd, e,=e,, 6e3 =z,+&s,,. (57) 

We now collect terms that represent independently distributed contributions to the distribution 
of times of arrival: 

t = to + (S, term) -t (Ss term) + (Sx term) + (S, term) . (58) 

When these terms are made to vanish by choice of geometric parameters of the instrument, the 
corresponding contributions to the resolution width vanish. 

The expression (25), correct though it is to first order in the deviations, does not imply that 
the variance of the time distribution, as, for example, in (37), is the sum of variances of those terms 
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separately. This is because the crystal reflection probability correlates the 6 s , 6 x , and 6 d 
distributions. Similar correlations would enter if collimators were included between elements of the 
instrument and treated in the analysis, which have not been included but could be. Nevertheless, if 
the terms in (58) are made to vanish by choice of geometric parameters, the corresponding 
contributions to the resolution vanishes and focusing is accomplished. 

TheG,termis 

(59) 

Since 6, is a vector that lies in the moderator surface, focusing clearly requires that the incident beam 
emerge perpendicularly from the moderator face; then the 6, term is zero, independent of the extent 
of the moderator surface. This result may be intuitively obvious, but it is reassuring that it emerges 
from. the present analysis. 

The 6 s term is 

(6, term) = $[(A’o/AJ 2, - EJ - ’ 
#sin2 0, 

L(k’o&J3L, + L2 + LJX 

~~~0s 2e,2, /L, - 2,i L21) + 6, (60) 

The geometric implications of this term are not clear at this point; we leave it for further 
interpretation at a later stage of the analysis. 

Thea,termis 

xl - cos 2e,@, /L, - 2, / L3) - z, IL, + z, / L2]) .s, (61) 

and the 6 d term is 

(6, term) = &{i;, - 4sii2 8 [(;1’,/Q3L, + L2 + L,]X 
0 

X[ - COS 28,iZ3/ L3 + Z, /L3]] * 6, , (62) 

both of which we also leave for interpretation at a later stage of the analysis. Already, however, we 
can provide a preliminary interpretation. The focusing conditions (59-62) are vector inner products. 
The expressions can be made zero either if the bracketed quantity, a three-dimensional vector, is 
perpendicular to the corresponding vector deviation 6 (that is, collinear with the vector normal to the 
surface) or if the vector itself is one of zero length. It may be possible, in view of the presence of the 
factor (&‘/h,,), to provide exact focusing independently of the value of the energy transfer E, by 
separately zeroing and/or orthogonalizing the &-dependent and &-independent terms in (60-62). 
Otherwise, if exact focusing is impossible or inconvenient, adequate reduction of the resolution width 
may be accomplishable for a finite range of energy transfers by keeping the terms (60-62) small. We 
note that the length of the initial flight path, LI , appears explicitly in (60-62) so that focusing and 
resolution considerations cannot be based solely on the geometry of the secondary spectrometer. 
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In application, it may be useful to recall that the detector elements can be made small using 
an area sensitive detector comprising small, independently-operating flat elements, and that the 
analyzer properties can be varied as a function of position on the analyzer, as in a curved array of flat 
crystals in which the crystal cut and orientation may vary from one position to another. In addition, 
there may be cases where the sample is small and the corresponding contribution to the resolution, 
equation (60), is negligible. Then zeroing equation (60) may be superfluous and the remaining 
conditions for “partial focusing” may be easier to implement. 

Equations (59-62) define elements of surfaces, “focused loci”, in general curved, such that 
variations of position on those surfaces do not affect the time of arrival. They are the first order 
terms in a vector Taylor expansion of the time of arrival in terms of the local (planar) deviations of 
the positions from the mean positions of the elements of the spectrometer, equivalent respectively to 

(64) 

(65) 

although we have derived them by developing first order expansions rather than by calculating 
gradients. The general curved focused surfaces are defined by the exact equation 

t (r,,,, r, r, rJ = constant = t (R, R, R, RJ, (67) 

to which the Taylor expansion is an approximation. Designs based on this linearized focusing 
analysis, whereby high resolution instrument configurations can be recognized in the analytical 
forms, need to be checked out, for example, by numerical integration of equation (35) or by Monte 
Carlo simulation, or by measurements in prototype arrangements. 

We have finished our task at a preliminary level at which focusing conditions appear. It 
remains to introduce explicit geometric representations of the elements of the spectrometer in order 
to interpret the results and generate estimates of the resolution for non-focused conditions. 

7. A NOTE ON THE INSPIRATION FOR THIS ANALYSIS 

The inspiration for this analysis is the experience with powder and single-crystal diffraction, 
wherein it is possible to nullify the geometric instrumental resolution, at least for certain restricted 
conditions, and in resonance-detector/filter spectrometers. In the first case, the simple algorithm 
“L sin 8 = constant” [l] provides conditions on the orientation of source, sample, and detectors that 
allow use of large apertures and areas and the consequent intensity improvements while preserving q 
resolution. This focusing also provides data systems simplifications in time-of-flight powder 
diffraction instruments. Modern powder diffractometers accomplish this electronically. The single- 
crystal implementation has application in measurements of moderator emission time distributions [2] 
wherein the requirement is that the instrument contribution to the observed width be negligible within 
very tight constraints while the intensity is maintained at a useful level. These are “two-leg” 
instruments. Several crystal analyzer instruments (“three-leg” instruments) employ what might be 
called “partial focusing,” QENS and CHEX at IPNS, TFXA and TOSCA at ISIS, and CAT and the 
LAM instruments at KENS. However, their designs may not have accounted for the full range of 
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effects treated here. Meanwhile, the high-resolution crystal analyzer instruments, LAM 80ET at 
KENS, and IRIS and OSIRIS at ISIS, employ nearly backscattering geometries that possibly can be 
made more general. In the case of the resonance spectrometers [3,4] (for deep inelastic, i.e. recoil, 
scattering) the same general ideas also work to improve the resolution. 
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Appendix 
The Wavevector Change for Scattering at the Analyzer 

In order to evaluate the intensity and resolution either numerically or analytically, 
we require specific forms which represent the distributions of accessible positions on the 
moderator, sample, analyzer, and detector, and an explicit form for the reflection 
probability. In addition, for the same purposes, we need the expression for the unit 
reflection vector Q , which we have not worked out above. For convenience in some of the 
envisioned uses, we represent this in terms of an expansion to first order in the flight path 
length deviations. 

First, we develop a linearized expression for the unit vector 6 that corresponds to a 
vector b which is itself the sum of two vectors, one large, B , and one small, 6 , 

The unit vector is 
b=B+S. 

6=(~+6++6I. 

The inverse magnitude of the vector, to first order in the small quantity, is 

where B is the unit vector and B the magnitude of B , 

and 
B=B/B (A4) 

B=IBl. (A3 
Thus, to first order in 6, 

(Al) 

which, to first order in 6 , is manifestly a unit vector. 
Because the scattering is elastic and the incident and scattered wavevectors are 

parallel to the vectors representing the incident and scattered paths to and from the analyzer, 
the direction of the wavevector change upon scattering at the analyzer is the same as the 
direction of the vector 4 

q+t2, (A7) 

where the 1 s are & vectors in the directions of incidence and emergence from the analyzer. In 
terms of deviations from the means, the connecting distance vectors (44) are of the form 

Q=L+cse 648) 

so that for each, according to (A6), the unit vector ) is 

P = 17 + se/L-z@. se/L) . 
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Now we express the wavevector 4 in the form 

where 

and 

&= L 

3-$-i,(e, $3) + L,(L, .$) . 
3 2 3 2 

By (A6) we find 

(AlO) 

(All) 

0412) 

(A13) 

scattering vector at the analyzer, 4, , 

ijo = yi . 

The leading term in (A13) is the unit vector corresponding to the geometrically defmednominal 

(A141 

Here, 

]t,-L212 = 2(i-e,.e2)=2(i-c0s28,)=4sin28,, 

so that 

1E3-E21 =2sinO,. 

Now writing 
a=&+@, 

we fmd from (A13), after some arithmetic, that 4 is 

&p-L 
2 sin e, 

in which 

and 

~_~+f(f+5)(%.~_i,.~)_ 
3 2 2 3 

(Al3 

0-w 

(A171 

, WV 

(AW 

WO) 

It is probably as well in practice to use (A14) and (A16) with & from (A12) recursively to 
compute g and &I in (A13). 

158 


